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Abstract 
The idea presented in this paper relates with the 

generalisation abilities of existing learning-based or 

indirect spectral reflectance reconstruction methods, 

which use a priori information about the objects to be 

imaged. Researchers using this type of methods have 

characterised and compared their errors over 

different test sets. However, they do not treat the 

problem of how to increase the results over these test 

sets. Using the concept of generalisation we propose 

an algorithm based on intense random resampling 

that increases the generalisation capabilities of such 

methods. This new bootstrap algorithm is applied on a 

specific operator chosen as a reference, but the 

algorithm remains general and can be applied to any 

learning-based reconstruction method. We present 

simulations and experimental results concerning the 

performance of the new algorithm. 

 

Introduction 
Spectral reflectance reconstruction has to deal with 

the problems of extrapolation, prediction and 

estimation of spectral curves. A reconstruction method 

can obtain bad results when confronted to a particular 

set of imaged objects while obtaining very good 

results for others. This is a delicate aspect that has not 

been treated at the moment on the multispectral 

scientific community. In fact, we have not seen any 

reference on the multispectral literature about how the 

existing methods generalise. 

 

Direct inversion (inversion of the characterised 

camera model) as presented in [1] and interpolation 

methods as used by [2] or [3] are not considered in the 

context of this paper because they do not introduce a 

priori information on the imaged objects. The case of 

the regularised direct inversion in 4 is different as 

spectral reflectance curves of the objects to be imaged 

are introduced to modify the inversion operator. This 

guarantees a better response over the set of spectral 

reflectances used as “a priori information”, but it still 

remains the question of what will happen when using 

other data sets. 

 

The same question arises when building operators on 

a set of camera responses and their corresponding 

spectral reflectances, 5, 6 and 7. We deal with these 

kinds of methods in this article. We call them 

learning-based or indirect reconstruction methods. We 

present an algorithm that increases the generalisation 

capabilities of the reconstruction operators. 

 

Learning Paradigm 
Indirect or learning-based spectral reflectance 

reconstruction is possible when spectral reflectance 

curves of a set of P color patches are known and an 

image of these patches is acquired by a multispectral 

camera. From this data a set of corresponding pairs (cp, 

rp), for p=1,...,P, is obtained; where cp is a vector of 

dimension K containing the camera responses and rp 

is a vector of dimension N representing the spectral 

reflectance of the p-th patch. Corresponding pairs (cp, 

rp) are easy to obtain, for instance professional 

calibrated color charts as GretagMacbethTM DC are 

sold with the measurements of the reflectances of their 

patches. In addition, if a spectroradiometer is 

available, performing the measure is a fairly simple 

experiment. Obtaining the camera responses from the 

known spectral curves of the color chart is just a 

matter of taking a multispectral image. 

 

Let’s now insert in the columns of a NxP matrix R all 

the ri’s and in the columns of a KxP matrix C all their 

corresponding ci’s. The construction of R and C allow 
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us to write the following solution to the problem of 

reflectance reconstruction: 

-
IndirectΘ  = R pinv(C) ,   (1) 

 

where pinv(C) = Ct (C Ct )-1, is the pseudo-inverse of 

the matrix containing the camera responses on its 

columns. 

 

The method introduced by Burns [5] corresponds to 

equation (1) where instead of looking for the operator 
-
IndirectΘ

 
that matches matrices C and R, the author 

looks for an operator that matches another matrix A. 

This new matrix A is calculated from R by Principal 

Component Analysis (PCA). Also the non-averaged 

pseudo-inverse method in [6] corresponds to equation 

(1) where the matrices R and C are large matrices and 

C contains original noisy camera responses without 

any low-pass filtering. Consequently, in order to 

present our proposed algorithm we choose the 

operator -
IndirectΘ as reference for the learning-based 

paradigm. 

 

Proposed algorithm 
The proposed algorithm uses the concept of bootstrap 

presented in [8]. The algorithm resamples 

simultaneously matrices R and C by using a random 

selection of their columns. The probability 

distribution used for the selection is uniform. We then 

call resample(.) a function taking a matrix and 

returning another matrix with randomly resampled 

columns. The function resample(.) transforms equally 

R and C by using the same random selection in each 

iteration. This condition is respected as, by definition, 

the two matrices contain corresponding columns. We 

note that the obtained matrices will contain repeated 

columns. Consequently, some columns of the original 

matrices will not be present on their resampled 

version. 

 

The proposed algorithm consists in building a 

reconstruction operator using the resampled matrices 

obtained from R and C. A large number of operators 

can be calculated along with their errors over a test set 

of data, Rtest and Ctest . Test data are necessarily to be 

different from R and C. Afterwards the operator 

showing the lowest Root Mean Square (RMS) error 

on the test set is chosen. 

 

The algorithm in pseudo-code is as follows: 

 

For i=1,…,Iter 

Ri = resample(R) 

Ci = resample(C) 

Θi = Ri pinv(Ci) 

errori = || Θi Ctest - Rtest ||2  

End For 

Choose Θi having the smallest errori  

 

where Iter is the number of iterations. 

 

Spectral Reflectance Databases  

In this article we use several databases of spectral 

reflectances. We present them in the following. The 

first three of them are kindly provided by D. Saunders 

from The National Gallery, London, the last one is 

downloaded from the Color Research Laboratory at 

University of Joensuu 9: 

•  The “Kremer ” database contains 184 spectral 

curves of pigments produced by Kremer Pigmente, 

Germany. 

•  The “ Selected Artists ” database contains 67 

pigments chosen among a collection of artist ’s 

paintings. 

• The “Restoration ” database contains a selection 

of 64 pigments used in oil painting restoration. 

• The “Munsell ” database is not issue from the 

same canvas painting environment. It contains 

spectral curves corresponding to 1269 matte Munsell 

colour chart samples. 

• The “MacbethDC ” database. We have scanned 

in our laboratory a GretagMacbethTM DC color chart 

using a Minolta CS-100 spectroradiometer. From this 

experiment we obtained 200 spectral curves. 

•  The “ Pine Tree ” database. This database 

contains 370 forest spectral reflectances, see 9. We 

include this database in some our tests because its 

nature is fundamentally different from the others we 

presented above. 
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Simulations 
We applied the presented bootstrap algorithm 

introduced using Iter=100 to some spectral reflectance 

databases. In this section, to illustrate the 

improvements obtained in our experiments we choose 

R as the matrix containing the spectral reflectances of 

the MacbethDC dataset. The corresponding matrix C 

is calculated by simulation considering a multispectral 

system with seven equidistributed Gaussian-shaped 

filters on the visible part of the spectrum. Twelve bits 

quantization is introduced on the system. The test 

reflectances used, Rtest, are the Kremer dataset. Ctest is 

calculated by simulation exactly as for C. 

 

Table 1. Comparing spectral accuracy results before 

and after bootstrapping 

 MacbethDC Kremer 

No bootstrap 0.0001884 0.001081 

After bootstrap 0.0002069 0.000744 

 

Table 1 presents the results of the application of the 

algorithm on the training set of the reconstruction 

method and on the test set of our algorithm. We found 

that it indeed reduces the RMS error on the test set but 

the error is augmented on the set used to build the 

operator. This increase of the reconstruction error on 

R is not necessarily bad. In fact, poor generalisation 

implies normally high specialisation on a set of data 

used for training. In fact, by just considering data 

presented on Table 1 we cannot know if the 

generalisation capabilities of the built operator are 

increased. We then present on Table 2 the results 

obtained using the bootstrap operator optimised on the 

Kremer database and applied to: Selected Artists, 

Restoration, Munsell, and Pine Tree datasets. The 

effect on these datasets is very positive, a reduction of 

the RMS spectral error is clear on all cases. The mean 

increase in accuracy is 29.6% that can be considered 

very significant, even more when considering that 

they are generalisation results and the used datasets 

come from very different origins. 

 

 

Table 2. Generalisation results before and after 

bootstrapping 

 Selected 

Artists 

Restoration 

No bootstrap 0.0006915 0.0006445 

After bootstrap 0.0004822 0.0003969 

Improvement 30.3% 38.4% 

 Munsell Pine Tree 

No bootstrap 0.0001538 0.0010293 

After bootstrap 0.0001326 0.0006592 

Improvement 13.8% 36.0% 

 

Even if the reduction of the RMS errors presented on 

Table 2 is very positive for Iter=100 iterations we 

wanted to know if it was possible to improve the 

results further. For this we applied our algorithm 

iteratively, the best Ri matrix found after Iter=100 

iterations of the algorithm being used as the matrix R 

for the next set of Iter=100 iterations. This strategy 

appears indeed to further reduce the error. Then, we 

decided to study closer the effect of the iteration of the 

algorithm. On the top panel of Figure 1 we can see the 

evolution of the error on the test dataset Rtest while 

iterating. Twenty algorithm iterations are enough to 

see that the error is reduced till a plateau is reached 

after 5 iterations. On the bottom panel of Figure 1 the 

evolution of the reconstruction error on R (the set 

used to train the reconstruction method) is shown. 

This error increases on each iteration and also reaches 

a plateau after 15 iterations. It is important to note that 

the plateau of error reduction on Rtest is reached before 

the plateau of error increase on R. 

 

On Figure 2 we present in a similar graph as on top 

panel of Figure 1 the RMS spectral error on the 

Selected Artists, Restoration, Munsell, and Pine Tree 

Leaves datasets. We can see that the iteration of our 

algorithm also reduces the error on these datasets. A 

plateau or a minimum is reached around 5 iterations 

as for Rtest, the Kremer test set. An exception appears 

for the Pine Tree dataset that continues decreasing its 

error. The behaviour of the algorithm observed on 

these experiments indicates that the optimum number 

of iterations is five for this case. Iterating more does 

not decreases the generalisation capabilities of the 
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reconstruction operation. On the contrary too many 

iterations degrade the reconstruction quality on the 

training set of the method and also on some datasets 

used to test the generalisation. 

 

Before concluding this section we quantify the 

improvements introduce for the proposed bootstrap 

based method. If we call rms the RMS reconstruction 

error without bootstrap and rmsb the RMS error 

obtained once the bootstrap has been applied, we can 

then easily calculate the per cent of improvement as: 

%improvement = 100brms rms
rms
− ×      (2) 

On Table 3 we present the results obtained after five 

iterations of the proposed algorithm (with Iter=100). 

We present for comparison the results when the 

algorithm is not used and the calculated per cent of 

improvement using equation (2). The results for 

generalisation appear to be very satisfactory. We also 

observe that after 5 bootstrap iterations the RMS error 

is much more equally distributed on the various 

datasets used for testing generalisation. 

 

Table 3. RMS errors before and after bootstrapping (5 

iterations) and % of improvement. 

 MacbethDC Kremer 

No bootstrap 0.0001884 0.0010810 

5 bootstraps 0.0003009 0.0005168 

Improvement -59.7% 52.2% 

 Selected 

Artists 

Restoration 

No bootstrap 0.0006915 0.0006445 

5 bootstraps 0.0003467 0.0002742 

Improvement 49.9% 57.5% 

 Munsell Pine Tree 

No bootstrap 0.0001538 0.0010293 

5 bootstraps 0.0001141 0.0003194 

Improvement 25.8% 69.0% 

 

 

Figure 1. RMS error evolution when iterating the 

bootstrap based algorithm several times. (top panel) 

Kremer data set used as test for the bootstrap, (bottom 

panel) MacbethDC data set used as learning set for 

the reconstruction operator. 

 

Figure 2. RMS error evolution on other data sets. 
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Experimental Results 
An experiment was performed using the multispectral 

camera developed at the European project CRISATEL, 

see [10] for reference. An image of the CRISATEL 

chart (also developed in the context of the project) 

was taken by the CRISATEL acquisition system. 

 

The CRISATEL chart is a juxtaposition of three sets 

of colour patches, each set contains the same patches 

sorted in the same way. The difference between these 

sets is the application of varnish over the pigments. 

The first set has no varnish, the second set has a thin 

layer of matt varnish and the third set has a layer of 

brilliant varnish. Each set contains 117 colour patches, 

81 are colour patches and 36 form a greyscale. The 

CRISATEL chart was measured by different 

spectrophotometers at London and Paris, see chapter 

2 of 11 for more details. We take the 117 non varnish 

patches of the CRISATEL chart and analyse them to 

obtain two different kinds of data: 

1. A matrix containing 117 columns with the mean 

camera responses of each colour patch. 

2. A matrix containing 117xS columns containing 

non averaged camera responses, S being the 

quantity of pixels analysed into each colour 

patch. 

 

In order to use the learning-based reconstruction 

paradigm we divide the CRISATEL chart into two sets: 

one will be used for training and the other for testing. 

This leads to four different sets: averaged train set, 

non-averaged train set, averaged test set and 

non-averaged test set. The train and test sets have the 

same size. The original matrix has been divided into 

two non intersecting sets by taking even elements for 

one set and odd for the other. We note that the 

averaged camera responses sets can be considered as 

less influenced by noise than the non-averaged ones 

that present a more realistic situation. 

 

In Table 4 we present spectral reconstruction errors 

(using the L1 metric) obtained by using different 

learning-based spectral reflectance reconstruction 

techniques, they are: -
IndirectΘ , the operator 

presented in equation (1); PCA
−Θ , the application of 

PCA to matrix R on equation (1), see [5]; noisy
−Θ , 

the non-averaged operator [6]; and bootstrap
−Θ , the 

proposed bootstrapped operator. 

 

Table 4. Results of four learning-based spectral 

reconstruction operators over the CRISATEL colour 

chart. 

The results presented in Table 4 indicate that most 

methods perform similarly. The bootstrap method 

performs slightly better than the others but the 

increment is very small. This is due to the training and 

test set used all belong to the same kind of spectral 

reflectance: art pigments. However the results 

presented in Table 4 only concern mean values. In 

Figure 3 we present the error histograms of the four 

compared methods. The error histogram of the 

bootstrapped operator, shown in panel (c), appears to 

be slightly better distributed than the other methods. 

This is seen as the histogram bars in (c) are grouped 

towards the left side of the histogram following a 

Gaussian like distribution. 

 

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

N
um

be
r 

of
 S

pe
ct

ra
l C

ur
ve

s

Error Bands
0 5 10 15 20

0

50

100

150

200

250

300

350

400

450

500

550

N
um

be
r 

of
 S

pe
ct

ra
l C

ur
ve

s

Error Ba 

(a)                 (b) 

 Train 
set 

Mean 
test set 

Non 
averaged 
test set 

-
IndirectΘ  0.010225 0.014875 0.015390 

PCA
−Θ  0.010770 0.015380 0.015878 

noisy
−Θ  0.010225 0.014741 0.015258 

bootstrap
−Θ  0.010878 0.014594 0.015176 
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Figure 3. Error histograms of different spectral 
reconstruction methods: (a) -

IndirectΘ , (b) 

noisy
−Θ , (c) bootstrap

−Θ
 
, (d) PCA

−Θ . 

 

This experiment is just a preliminary test. Even if 

already positive, our experiment is to be extended 

using other charts of different materials. 

 

Conclusion 
We have proposed a method for improving the 

generalisation capabilities of linear reconstruction 

operators by using bootstrap. To our knowledge, it is 

the first time that such an approach is taken on 

spectral reflectance reconstruction. We have tested the 

method by simulation and using the CRISATEL 

acquisition system. The obtained results are 

satisfactory. Even if the tests have been performed 

using a specific operator, the algorithm remains 

general and is applicable to any learning-based 

reconstruction method using a priori information over 

the imaged objects. 
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